COSDEM

PRESENTATION

Show

SUMMARY

2	Summary Company Cosdem Process	2 3 4 5
0	MACHINE RANGE	
_	COSDEM 1 NEW SYSTEME (COSDEM 2 & 3)	6 7
-	COSDEM 4 COSDEM IP	8 9
4	EQUIPMENT	
_	Crimp Dies Crimp Dies Integration	10 11 12
2	Integration Integration	13 14
E	Integration Smoke extractor Lugs	15 16 17
2	Lugs Lugs	18 19
E	Support QUALIFICATION	20
R	Test resources Test resources	21 22
P	CONTRIBUTION COSDEM	
	Profits	23
	COMMUNICATION	

24

COMPANY

AMR ELECTRONIQUE

Located in Saint just (FRANCE) over 35 years AMR Electronique develops and manufactures new production processes for winding trades. Our expertise how has steadily developed which allows us today to accompany our customers in areas such as:

- The agglomeration winding wires with polymerization by Joule Effect
- Analysis and qualification of enameled wire (for new product)
- Connection without unenamelling with COSDEM
- Prototyping of specific products manufactured for the imposed constraints
- The qualification and validation of connections
- Bench Test motors

QUALITY AND MEANS

Now present in 5 continents, we give special attention quality tools in both:

- Analysis and qualification means
- Production
- Production management of our equipment

AREAS OF ACTIVITIES

AMR Electronique delivers reliable and sustainable business solutions to our partners in Aeronautics, Automotive, Energy, Medical, Nuclear, Railway ...

COSDEM

COnnectionS freeD of unEnaMelling

This process, perfected by AMR, ensures the connections of magnet wires:

- Copper or Aluminium,
- Same or different diameters,
 - Round, flat or CTC

NTATION

F

Ш

2

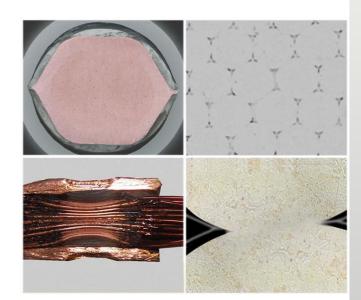
- Single or multi wires
- enamelled, tinned or bare,

and that:

-in a same socket
a same terminal
-a same barrel
-a same lug
-standard to all the manufacturers

by:

-heat confining
-soft or hard solder with filler metal


The joint action of the couple pressure X heat applied through a socket, barrel, lug or terminal, induces the creeping of the enamel, which ensures the connection of the enamelled magnet wires.

The process is suitable for any composition and any type of enamel.

Cross section before crimping

Porosités Email Cul Cul Colle

Cross section after crimping

The use of welded wire is no longer inevitable.

Thanks to COSDEM, complex compositions (like litz wires cables) can be now used with high performance insulation.

The prospects of technological and economic developments of your coils have currently no limits.

Cf AMR publication: "Litz wires and coil"

"Polymeres and electrical insulation"

"Enameled wires and coil"

"Rotating machines and coil "

H

8

COSDEM 1

RANG

MACHINE

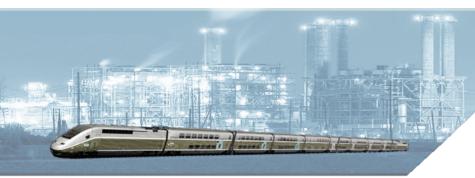
PRODUCT

For copper wires

For copper tubular lug

APPLICATION

Laboratory machine

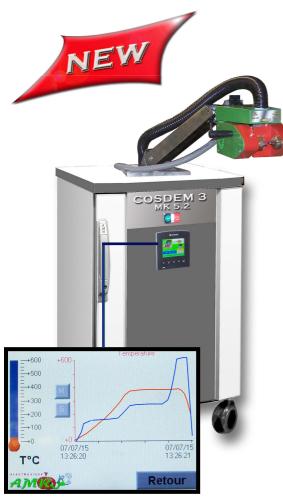

Small production

OPTION

Compensator for easy manipulation

Smoke extractor for the traitment of emanation

Ph	Physical specifications Crimping tool					
Height	240 mm					
Length	165 mm					
Width	80 mm					
Weight head	2,5 Kg					
Weight cabinet	1,5 Kg					
Output voltage:	1V - 500 A - 500 Hz					
Connection capacities	from 0,25 up to 10 mm2					
Power supply	230 V, 50 Hz,					
	Monophased					
Into	erchangeable jaws with specific prints on request					



F

2

H

COSDEM 2 & 3 MK 6.0 S

PRODUCT

For copper or aluminium wires

For copper or aluminium tubular lug

APPLICATION

Series production,

New development,

INTERFACE

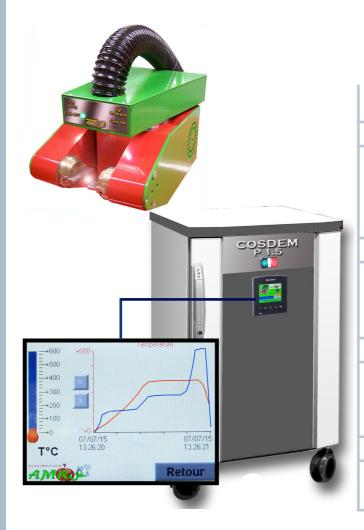
Viewing crimp curves

Technical Data: Pressure / Temperature

ALL IN ONE SYSTEME

Compensator for easy manipulation

Smoke extractor for the traitment of


emanation

	Physical specifications Crimpir	ng tool				
	COSDEM 2	COSDEM 3				
Height	140 mm 180 mm					
Length	255 mm	310 mm				
Width	160 mm	210 mm				
Weight	12 kg	18 kg				
Connection capacities	from 10 mm2 to 70 mm2	from 50 mm2 to 185 mm2				
Output voltage 1V - 2000 A - 500 Hz /Galvanic insulation > 8 kV						
Smoke extraction	To be defined depending on the section and the volume of production					
	Physical specifications Power s	supply				
Height	900 r	nm				
Length	600 r	nm				
Width	600 r	nm				
Weight	70 k	kg .				
Power supply	230 V , 50 Hz	400 V, 50 Hz / 440 V, 60Hz				
	Monophased 16 A Three-phased 20 A					
Automatic range	from 10 mm2 to 70 mm2 from 50 mm2 to 185 mm2					
Optional	High temperature Wires (Cut through <	or soldering 650° C)				
Interchangeable jaws with specific prints on request						

COSDEM 4 HYDRO

0

MACHINE

PRODUCT

For copper or aluminium wires

For copper or aluminium tubular lug

APPLICATION

Series production,

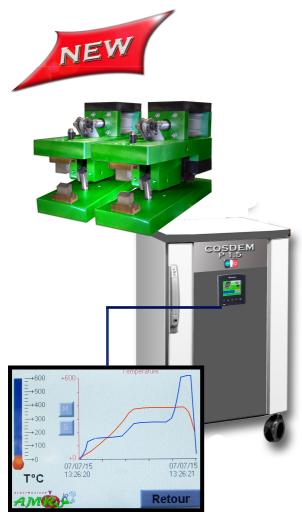
New development,

INTERFACE

Viewing crimp curves

Technical Data: Pressure / Temperature

OPTION


Compensator for easy manipulation

Smoke extractor for the traitment of

emanation

	Physical specifications Crimping tool				
Height	200 mm				
Length	360 mm				
Width	210 mm				
Weight	22 Kg				
Smoke extraction by ventilation with interchangeable filter					
Output voltage	1V - 2000 A - 500 Hz /Galvanic insulation > 8 kV				
Connection capacities from 150 mm2 to 630 mm2					
	Physical specifications Power supply				
Height	380 mm				
Length	210 mm				
Width	525 mm				
Weight	20 Kg				
Power supply	400 V, 50 Hz / 440 V, 60Hz				
	Three-phased 25 A				
Automatic range	from 150 mm2 to 630 mm2				
Optional	High temperature Wires (Cut through < or soldering 650° C)				
	Interchangeable jaws with specific prints on request				

PRODUCT

- For copper or aluminium wires
- For copper or aluminium tubular lug

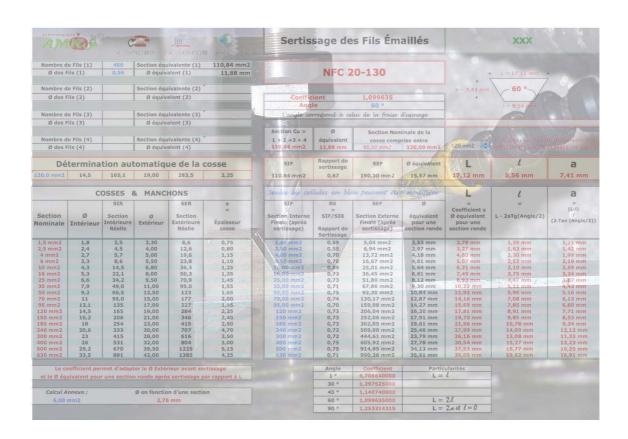
APPLICATION

- Larges Series production, (severals thousand per day)
 - New development,

INTERFACE

- Viewing crimp curves
- Technical Data: Pressure / Temperature

ALL IN ONE SYSTEME


- Implementation on the production line
- Smoke extractor for the traitment of emanation

	Physical specifications Crimpir						
	COSDEM 1 IP	COSDEM 2 IP					
Height	120 mm	180 mm					
Length	250 mm	310 mm					
Width	100 mm	210 mm					
Weight	4 kg	12 kg					
Connection capacities	from 0,5 mm2 to 10 mm2	from 10 mm2 to 70 mm2					
Output voltage	utput voltage 1V - 2000 A - 500 Hz /Galvanic insulation > 8 kV						
Smoke extraction	Smoke extraction To be defined depending on the section and the volume of production						
	Physical specifications Power s	supply					
Height	900 r	nm					
Length	600 r	nm					
Width	600 r	nm					
Weight	60 k	kg .					
Power supply	230 V , 50 Hz	230 V , 50 Hz					
	Monophased 16 A	Monophased 16 A					
Automatic range	from 0,5 mm2 to 10 mm2	from 10 mm2 to 70 mm2					
Optional	High temperature Wires (Cut through <	or soldering 650° C)					
	Interchangeable jaws with specific prints	on request					

2

The design of the crimping tools should consider:

- Composition of your cable
- Copper or aluminium cross section
- Your cable geometry (Round, Rectangular or Square)
- From connector use

Step 1 Set up a connector type

We can help you along this step:

- By directing you to the most appropriate connector, according to the different standards.
- By offering a design specific to your needs pods (see page 18)

Step 2 Design and material selection

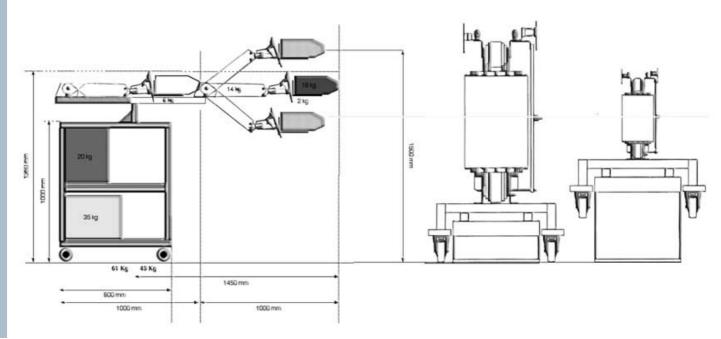
AMR set a specific geometry of the crimping tools thanks to a computer program taking part in the elements mentioned above, to ensure the optimum mechanical and electrical resistance values.

These tools can be cut into different materials in according to the crimping quantity and the type of connector.

Step 3 Identification and markings


Each tool can be identified according to your criteria. Example: Project Number, Section crimp, Code specific to the company.

The crimped connector will be marked by the tools references.



AMR ACHIEVES THE INTEGRATION ACCORDING TO YOUR SPECIFICATION

- Integration of production line
- Congestion of unit
- Perimeter crimping

- Arm length for deployment
- Mobile or fixed unit
- Smoke extraction system

13 Kg

COSDEM 2 MANIPULATOR ARM

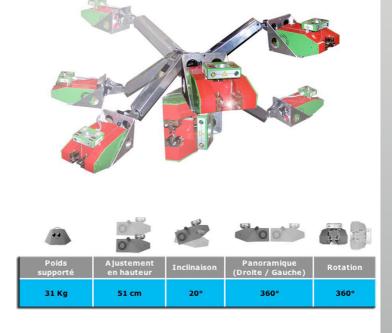
Fulfilment of the most demanding connections!

This new arm,, allows effortlessly manipulate of your COSDEM in all crimping configurations possible.

Kinematics

80°

360°


13 cm

COSDEM 3 MANIPULATOR ARM

Fulfilment of the most demanding connections!

This new arm,, allows effortlessly manipulate of your COSDEM in all crimping configurations possible.

Kinematics

UIPM

EXAMPLE OF REALISATION

CONNECTION AREA COSDEM 1 / 2 / 3

 A single mobile worstation to connect your whole cables

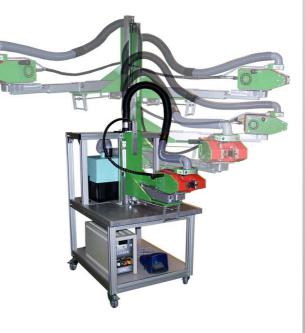
COSDEM 1 COMPENSATOR

The handing in your production service.

This COSDEM 1 assistance is a complete set, easy to integrate on your workstations. It preserves the health of the operator compensation weight of the head and thanks to the absorption of fumes during crimping

EXAMPLE OF REALISATION

COSDEM 2 COMPACT ASSISTANCE


- A compact solution to your probleme of connection.
 - Connection System
 - Manipulatot arm
 - Smoke extraction
 - Storage
 - H: 750 mm x L: 600 mm x W: 310 mm

COSDEM 3 COMPENSATOR

This COSDEM 3 assistance is distinguisched by the large deployment of the manipulator arm.

The maximum height reached crimping is 1,8 meters

Certifies your filter unit according to your application to:

- Protecting people against the fumes produced during crimping.
 - Process gases and fumes to protect the environment.
 - Avoid clogging and extend the life of your equipment

Connection / Days	5			.0		20		30		60		00	15			00		00		00
Enamel Solder's	Stande	Solder	Stand	Solder of the Solder	Stand	Solder	Stand	Solder Sard	Stand	Solder	Stand	Solder ard	Stande	Solder	Stand	Solde,	Stane	Solde,	Stant	Yard
Section													<u> </u>							
1,5 mm2																				
2,5 mm2																				
4 mm2																				
6 mm2																				
10 mm2																				
16 mm2																				
25 mm2																				
35 mm2																				
50 mm2																				
70 mm2																				
95 mm2																				
120 mm2																				
150 mm2																				
185 mm2																				
240 mm2																				
300 mm2																				
400 mm2																				
630 mm2																				
	Low Medium weighty		Extr Extr	action (action (action (CDF 2 CDF 2															
	High Very hy	ah		action (1														

The protection of persons

- Technical features

Caractéristiques techniques Extraction de fumée							
Modèle/ Model	CDF1	CDF2	CDF3				
Hauteur / Height	180 mm	450 mm	450 mm				
Longueur / Length	200 mm	300 mm	600 mm				
Largeur / Width	160 mm	300 mm	300 mm				
Poids / Weight	6	12 Kg	21 Kg				
Puissance / Power :	36	115 Watts	230 Watts				
Niveau sonore /Sound level	55 dBA	55 dBA	65 dBA				
Filtre / Filter	Filtre particules fines	HEPA 12	HEPA 12				
Alimentation / Power supply	230 V, 50 Hz, monophasé / Monophased	230 V, 50 Hz, monophasé / Monophased	230 V, 50 Hz, monophasé / Monophased				

EQUIPMENT

LUGS

Internal sections of different standards

SECTION COMMERCIALE	N	IFC 20-1	30		
NOMINALE COSSES CUIVRE	Ø Int.	Section Intérieure Réelle	Ø Ext.		
1,5	1,8	2,5	3,3		
2,5	2,4	4,5	4,0		
4	2,7	5,7	5,0		
6	3,3	8,6	5,5		
10	4,3	14,5	6,8		
16	5,3	22,1	8,0		
25	6,6	34,2	9,5		
35	7,9	49,0	11,0		
50	9,2	66,5	12,5		
60					
70	11	95,0	15,0		
95	13,1	135	17,0		
120	14,5	165	19,0		
150	16,2	206	21,0		
185	18	254	23,0		
240	20,6	333	26,0		
300	23	415	28,0		
400	26	531	32,0		
500	29,2	670	39,5		
630	33,5	881	42,0		
800					
1000		1			
Commentaires		orme Franç Cosse tubula			
Comments	French Standard Tubular Cable lug				

NFF 00363						
Ø Int.	Section Intérieure Réelle	Ø Ext.				
,						
,						
5	20	8,0				
6	28	9,0				
7,7	47	10,5				
9	64	12,0				
10,8	92	14,0				
11,8	109	15,0 16,0				
12,5	123					
14,5	165	18,5				
16,5	214	21,0				
18	254	23,0				
20,5	330	26,0				
23	415	29,0				
26	531	33,0				
33	855	39,0				
40	1257	50,0				
N.						
	Ferroviaire					
	sse tubula					
Rai	Iroad Stan	dard				
Tub	ular Cable	lug				

Ø Int.	Section Intérieure Réelle	Ø Ext.	Ir
1,6	2		
2,3	4		
3,6	10		
3,6	10		3
4,5	16		4
5,8	26		5
7,5	44		
9,4	69		8
11	95		1
2777177			
13	133		11
15	177		13
17	227		15
19	284		1
21	346		1
23,5	434		21
	,		24
	,		27
	,		3
	Ç		34
	•		4
No	rme Allema		
<u></u>	Cosse roulé		
	erman Stand		
Rour	ded & weld	ed lug	
	VDE 022	0	Γ

DIN 46234

Ø Int.	Section Intérieure Réelle	Ø Ext.								
3,8	11	5,5								
4,5	16	6,0								
5,5	24	8,5								
7	38	10,0								
8,2	53	12,5								
10	79	14,5								
5-12 DE										
11,5	104	16,5								
13,5	143	19,0								
15,5	189	21,0								
17	227	23,5								
19	284	25,5								
21,5	363	29,0								
24,5	471	32,0								
27,5	594	38,5								
31	755	42,0								
34,5	935	44,0								
40	1257	52,0								
44	1521	58,0								
	me Allem									
	sse tubul									
Ger	rman Star	idard								

SECTION COMMERCIALE	IEC 61238-1				
NOMINALE COSSES CUIVRE	Ø Int.	Section Intérieure Réelle	ø Ext.		
1,5		_			
2,5		•			
4					
6	3,3	9	5,0		
10	4,6	17	6,8		
16	5,8	26	8,0		
25	7	38	9,5		
35	8,9	62	11,8		
50	10	79	13,0		
60					
70	11,3	100	14,6		
95	13,5	143	17,5		
120	15,2	181	19,7		
150	16,7	219	21,5		
185	19	284	24,5		
240	21	346	27,3		
300	23,7	441	30,7		
400	27	573	35,0		
500					
630		•			
800		,			
1000		•			
Commentaires		me Internat Cosse tubula			
Comments	00.000.00	IEC Standa bular Cable			

Ø Int.	Section Intérieure Réelle	Ø Ext.
1,7	2	
2,3	4	
3,4	9	
4,5	16	
5,8	26	
7,7	47	
9,4	69	
,		
11,4	102	
13,3	139	
14,5	165	
16,4	211	
19,5	299	
,		
,		
'		
	me Améric	
	cosse roulé	e
L	IS Standar	d

Ø Int.	Section Intérieure Réelle	Ø Ext.
3,5	10	
4,5	16	
5,5	24	
7	38	
8,5	57	
10	79	
1	5	
12	113	
13,5	143	
15	177	
16,5	214	
19	284	
21	346	
23,5	434	
27	573	
	1	
-	1	
	6	
Nor	me Allema	nde
Co	sse tubula	ire
Ger	man Stand	lard
Tub	ular Cable	luas

DIN VDE 5/295							
Ø Int.	Section Intérieure Réelle	ø Ext.					
,							
,							
,							
5,6	25	8,0					
6,6	34	9,5					
7,9	49	11,0					
9,2	66	12,5					
11	95	15,0					
13,1	135	17,0					
14,5	165	19,0					
16,2	206	21,0					
18	254	23,0					
20,6	333	26,0					
23	415	28,0					
26	531	32,0					
,							
,							
,							
Nor	me Allem	ande					
100000	sse tubul						
	man Stan						
Tubi	ılar Cable	luge					

LUGS

Internal sections of different standards

Comments	French Standard Alu Tubular Cable lug				
Commentaires	Norme Française Cosse tubulaire Alu				
1000					
800		•			
630	32,5	830	47,0		
500	29,1	665	47,0		
400	26	531	40,0		
300	23,3	426	40,0		
240	19,5	299	32,0		
185	17	227	32,0		
150	15,5	189	25,0		
120	13,7	147	25,0		
95	12,5	123	20,0		
70	11	95	20,0		
50	9	64	20,0		
35	8	50	16,0		
25	6,5	33	16,0		
16	5,5	24	16,0		
10					
6					
4					
1,5 2,5					
ALUMINIUM		No. of the last of			
COSSES	Int.	Intérieure Réelle	Ext.		
NOMINALE	ø	Section	ø		
COMMERCIALE					

SECTION	Cs	te TH 650	°C	
NOMINALE COSSES NICKEL	Ø Int.	Section Intérieure Réelle	Ø Ext.	
0,5 - 1	1,6	2,0	3,2	
1,5 - 2,5	2,3	4,2	3,9	
4,0 - 6,0	3,6	10	5,6	
10	4,5	16	6,5	
16	5,5	24	7,5	
25	7	38	10,0	
Commentaires	Haute Température			
Comments	Cable lugs for high T°C			

SECTION	DIN 46228/1			
NOMINALE MANCHONS	ø Int.	Section Intérieure Réelle	Ø Ext.	
0,25	0,8	0,5	1,1	
0,34	0,9	0,6	1,2	
0,5	1	0,8	1,3	
0,75	1,2		1,5	
1	1,4	1,5	1,7	
1,5	1,7	2,3	2	
2,5	2,2	3,8	2,5	
4	2,8	6,2	3,2	
6	3,5	10	3,9	
10	4,5	16	4,9	
16	5,8	26	6,2	
25	7,3	42	7,8	
35	8,3	54	8,8	
50	10,3	83	10,9	
70	12,5	123	13,3	
95	14,5	165	15,3	
120	16,5	214	17,5	
150	18,5	269	19,5	
185	20	314	21,2	
Commentaires	Norme Allemande Manchons tubulaire			
Comments	German Standard			

SECTION	Cs	te TH 400	°C	
NOMINALE COSSES INOX	Ø Int.	Section Intérieure Réelle	Ø Ext.	
0,5 - 1	1,6	2,0	3,2	
1,5 - 2,5	3	7,1	5,0	
4,0 - 6,0	4	13	6,0	
10	5	20	7,0	
16	6	28	8,0	
25	7	38	10,0	
35	9	64	12,0	
50	10	79	14,0	
70	12	113	16,0	
95	14	154	18,0	
Commentaires	Atm	osphère cor	rosive	
Comments	Cable lugs for corrosive			

LUGS

Gauge according to the standards

Allow to detremine the ideal connector for your cable among all the standards

Material:

→ Aluminium 7075

Standards:

→ IEC 61238-1 , NFC 20130, NFF 00-363, DIN 46235

Custom made:

Other standards

Specifical Lugs

Innovative solution for connections in the most demanding application

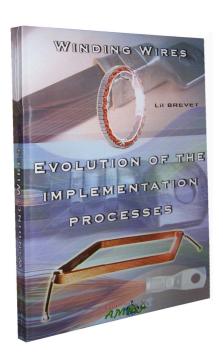
Material:

Copper, Aluminium, Brass, Bronze

Surface traitement

→ Ag, Ni, Tn, Or

Areas activities


Aeronautics, Automotives, Energy, Nuclear, Railways

WINDING WIRES

Evolution of the implementation processes

Éditor: AMR ELECTRONIQUE

Collection / Série : Winding wires ; 1

215 pages; 21 x 15 cm;

ISBN 978-2-9519035-3-1

This collection is designed for Professionals winding.

It tries to present the state of the art and especially the evolution of products and processes in the coming years.

It shows some new production tools and the Industrial Quality Tools needed for different sectors.

The approach to these tools is pragmatic and some formulas and tables that illustrate these pages are given to indicate to the reader the orientation of its industrial development.

This book tries to debunk some assertions from the nature of things and ... habits...

TEST RESOURCES

Mechanical and electrical qualifications according to different standards ensure to our our customers the mastery and quality of their connections.

- -Tensile test
- Standard aging cycle at 120 ° C (Adaptable to the specific needs of the client)
- Shooting current system
- Steaming-to + 200 ° C

Tensile test

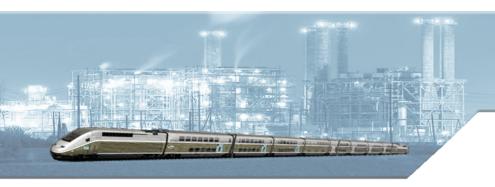
According with among all the standards

Technical specifications							
Model	BTE1	BT2	BT3				
AMR number	AMR0123	AMR0856	AMR0427				
Capacities	200 N	5000 N	40000 N				
Range section	0,1 up to 1,5 mm2	1,5 up to 95 mm2	50 up to 630 mm2				
Steamed system	YES NO NO						
Aquisition system	Force / Time / Temperature						

Micro-photography

Optical measurement tools allow visualization of the qualification results.

Analysis wire Ø 0.01 mm


Aging Système

Electrical and mechanical qualification is the best way to validate the quality of your connections.

Physical specifications					
Length	6000 mm				
Height	600 mm				
Width	600 mm				
Insulation	50 mm Rockwool				
Aquisition system	Temperature / Resistance connection				
Range test	from 1,5 mm2 to 240 mm2				
Ventilation	Controled				

PROFITS

		TECHNOLOGICAL ADVANTAGE					ECONOMICAL ADVANTAGE	
ITHOUT FILLER METAL	SINGLE ENAMELLED WIRE	Removal of dangerous		Answer to the ageing problems of leadfree welds	Resistance of the connection up to two times lower, due to the fact that the tin alloys used for soft solders have resistivity ten times upper than copper one.	between the wires flush with the terminal which makes them very flimsy when		30'
	LITZ WIRE	processes like blowtorch					Cutting down the time required for making the internal connections (Some seconds instead of source) minutes).	· ·
ONNEXION, W	FLAT ENAMELLED WIRE	forbidden processes like chemical strip						Cutting down the amount of materia employed: flexible sheaths, filler meta reduction of the contacts sizes
PERFECT MULTI-SUPPORT CONNEXION, WITHOUT FILLER METAL	FLAT ENAMELLED TRANSPOSED WIRE							donates sizes
	DIRECT CABLES CONNEXION	mechanical stripping devices				vibrating.	€	e de la companya de l
PE	ADVANTAGES	Mastery o Con		Technological improvem		ovement	Major finan	icial impact

TECHNICAL ADVANTAGES WITH IMMEDIATE EFFECT GIVING:

AN OUTSTANDING PROCESS CONTROL: REPRODUCTIBILITY AND SIMPLIFICATION

 $\label{thm:continuous} \textbf{FINANCIAL} \ \textbf{ADVANTAGES} \ \textbf{WITH} \ \textbf{IMMEDIATE} \ \textbf{EFFECT}, \ \textbf{INVOLVING}:$

LOW INVESTMENT
AND
NOTABLE IMPROVEMENT OF THE QUALITY

IMMEDIATE IMPROVEMENT OF THE QUALITY INDUCING:

THE SATISFACTION OF THE CUSTOMER AND COMPETITIVE BENEFITS

SHOW

CWIEME BFRLIN

www.coilwindingexpo.com/berlin 10-12 May 2016 Messe Berlin

Appointment in 2017 with our patner SOFILEC to attend the demonstration COSDEM.

Type of conductor, insulation system, working frequency, held dielectric, operating temperature, types of converters, efficient connector, connection and agglomeration process, we offer you solutions complete adapted to growing requirements for design your winding.

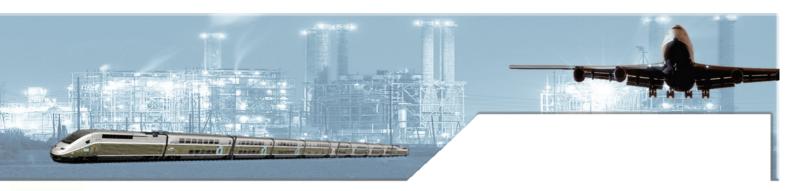
Find our demonstration video on you tube:

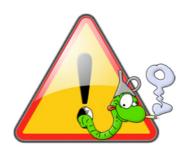
https://www.youtube.com/channel/UCqvJm5zm-OpFsiAPhH1AQEg

LOCALIZATION

AMR Electronique ZI Les Fougères 45, Allée du Petit Plan F-0125 SAINT JUST FRANCE

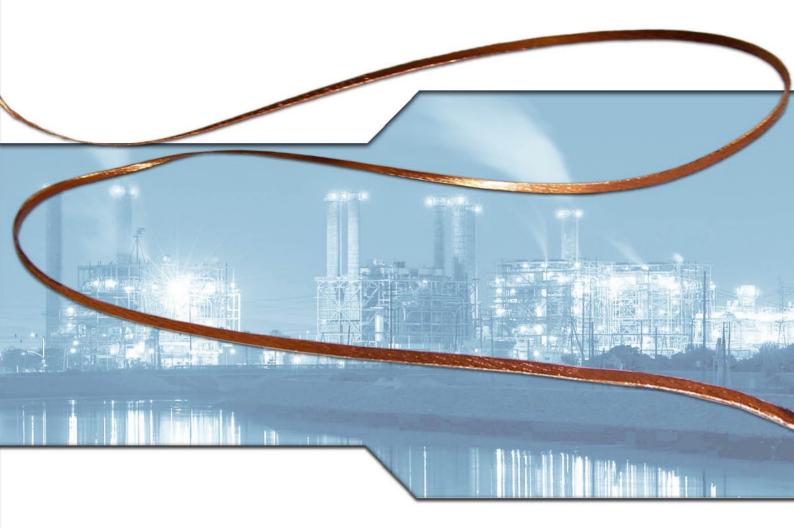
Tel. +33(0)4 74 23 23 06


https://www.amr-electronique.com



Localization (GPS)

http://cosdem.com/Fr/Index.htm


This documentation is not contractual.

Items represented are proposed while stock lasts.

AMR reserves the right to discontinue its production or change specification without notice.

Non-contractual picture

